
MATHEMATICS IN CONTRACT THEORY
(PRELIMINARY VERSION)

HAO XING

For general introduction to contract theory, refer to [Bolton and Dewatripont, 2005]. For

mathematical theory for continuous-time models, refer to [Cvitanić and Zhang, 2013].

1. One-period model

1.1. Problem formulation. To understand the flavor of questions in contract theory, we

start with an one-period model in this section.

Consider an agent whose utility is modelled by an exponential utility with the risk aversion

γA, i.e., UA(c) = − 1
γA
e−γAc. If hired at time 0, this agent manages a project, which produces

an output at time 1. The output is random, and it is modelled by a normal random variable X

with the mean α and the standard deviation σ, i.e., X ∼ N(α, σ). The mean α is determined

by the agent’s effort. If the agent works hard, α is high, otherwise α is low. The randomness

of the output is characterized by σ which cannot be controlled by the agent. The effort is

costly to the agent. The cost is given by a cost function g(α) which is the monetary cost to

the agent if he exerts effort α. We consider the following cost function

g(α) = 1
2
α2.

If hired, the agent will receive a lump-sum compensation ξ at time 1. We call this compen-

sation the contract payment, or simply contract.

The agent chooses his optimal strategy to maximize the expected effort net cost, i.e.,

E
[
UA(ξ − 1

2
α2)
]
→ Max.

Assuming that this optimization problem has an optimizer αξ, E[UA(ξ − 1
2
(αξ)2)] is the

optimal value associated to the contract ξ for the agent. The agent has a reservation value

UA(R), which describes the minimal utility that the agent needs to take on a job; i.e., the

agent will only take on a contract if the associated optimal value is not smaller than his

reservation value.

Consider a principal whose utility is modelled by an exponential utility with the risk

aversion γP , i.e., UP (c) = − 1
γP
e−γP c. The principal wants to hire the agent to work on

the project. However, the principal cannot monitor or observe agent’s effort. The principal

can only observe the realization of X at time 1. (It is impossible to estimate the mean
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of a normal random variable with only one realization.) Therefore, there is information

asymmetry between the agent and the principal. This information asymmetry is called

moral hazard in the economics literature.

At time 1, the principal receives the output X and pays the agent ξ. The principal aims

to choose contract ξ to maximize her expected utility, i.e.,

E
[
UP (Xξ − ξ)

]
→ Max,

subject to

E
[
UA(ξ − 1

2
(αξ)2)

]
≥ UA(R).

Here Xξ is the output when the agent employs the effort αξ. The constraint is called agent’s

participation constraint. The goal of this problem is to find principal’s optimal contract ξ

and agent’s optimal effort aξ.

1.2. Agent’s optimization problem. First, it is not optimal for the principal to pay a

constant salary ξ, because if agent receives a compensation which does not depend on the

output, he will not exert any costly effort at all. Therefore, ξ needs to be random and

depends on X. Let us consider the following linear contract

ξ = aX + b, a, b ∈ R, (1.1)

where b is the fixed salary and aX is the performance-based compensation. The constants a

and b are called contract sensitivities.

For a given linear contract in (1.1), the agent wants to maximize the expected utility

E
[
− 1

γA
e−γA(aX+b−1

2
α2)
]
.

Recall that

E[ecX ] = eαc+
1
2
σ2c2 . (1.2)

The previous expected utility equals to

− 1
γA
e−γAb−γAaα+

1
2
σ2a2γ2A+

1
2
γAα

2

.

Its optimizer minimizes −γAaα + 1
2
γAα

2. Therefore, the optimal effort is

aξ = a, (1.3)

and agent’s optimal value is

− 1
γA
e−γAb+

1
2
σ2a2γ2A−

1
2
γAa

2

.
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1.3. Principal’s optimization problem. Given agent’s optimal effort aξ and the associ-

ated output Xξ, the principal aims to maximize

E
[
UP (Xξ − ξ)

]
=− 1

γP
E
[
e−γP (Xξ−aXξ−b)]

=− 1
γP
eγP b−γP (1−a)a+

1
2
σ2γ2P (1−a)2 ,

(1.4)

where (1.2) is used to obtain the second identity.

Observe that principal’s optimal utility is decreasing in b. Therefore the principal wants

to choose the smallest b such that the participation constraint is satisfied. This implies

− 1
γA
e−γAb−γAaα+

1
2
σ2a2γ2A+

1
2
γAα

2

= − 1
γA
e−γAR,

leading to b = 1
2
γAσ

2a2 − 1
2
a2 +R.

Plugging the previous expression of b back to (1.4), we obtain

E
[
UP (Xξ − ξ)

]
= − 1

γP
exp

(
γPR + 1

2
γAγPσ

2a2 − 1
2
γPa

2 − γP (1− a)a+ 1
2
σ2γ2

P (1− a)2
)
.

Therefore, we just need to minimize the exponent of the right-hand side. The optimizer is

a∗ =
1 + γPσ

2

1 + (γA + γP )σ2
.

Proposition 1.1. Among all linear contracts of type (1.1), the optimal linear contract is

given by

ξ = a∗X + b∗, where a∗ =
1 + γPσ

2

1 + (γA + γP )σ2
and b∗ = 1

2
γAσ

2(a∗)2 − 1
2
(a∗)2 +R.

Remark 1.2. From the expression of a∗, we can see that a∗ → 1, when either σ → 0, γA → 0,

or γP → ∞. Therefore, the principal sells the whole project to the agent for cash at time

0, when either the project is riskless, the agent is risk neutral, or the principal is extremely

risk averse.

Remark 1.3. The optimal contract in the linear class is obtained in the previous proposition.

However, if the principal is allowed to choose from nonlinear contracts, it is not clear whether

nonlinear contracts will improve her utility. Consider a N -period model, where the output at

the end of period N is X1 +X2 + · · ·XN . If the principal can observe all Xi, she can choose

from path-dependent contracts f(X1, X2, . . . , XN). In this case, it is restrictive to consider

only linear contracts. We will tackle these problems in a continuous-time framework in the

next section.

2. Holmström and Milgrom (1987)

2.1. Preliminaries.
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2.2. Problem formulation. We present [Holmstrom and Milgrom, 1987] in this section.

Let (Ω,F, (Ft∈[0,T ]),P) be a filtered probability space, where the filtration is the augmented

filtration generated by a 1-dimensional standard Brownian motion B.

The agent, if hired at time 0, works for a project continuously from time 0 to T . His effort

is an adapted process α. The output process X satisfies the dynamics

dXt = αtdt+ σdBα
t , (2.1)

where σ is a positive constant,

Bα
t = Bt −

∫ t

0

αs
σ
ds. (2.2)

One can observe that X = σB. Define a new probability measure Pα via

dPα
dP = exp

( ∫ T

0

αs
σ
dBs − 1

2

∫ T

0

(αs
σ

)2ds
)
.

We assume that α satisfies enough integrability so that the right-hand side has expectation 1

under P. Therefore, Pα is a probability measure equivalent to P. In what follows, we denote

EPα [·] by Eα and EPα [· | Ft] by Eαt [·]. By Girsanov theorem, Bα is a Brownian motion under

Pα. Therefore, if α is deterministic, XT has normal distribution under Pα with the mean∫ T
0
αtdt and the standard deviation σ

√
T .

Remark 2.1. The formulation in (2.1) is called the weak formulation. In such a formulation,

controlling the drift of X is equivalent to controlling the probability measure Pα.

The cost of agent’s effort is assumed to be
∫ T

0
1
2
α2
sds. The agent chooses his optimal

strategy to maximize

E
[
UA(ξ −

∫ T

0

1
2
α2
sds)

]
.

Assume that this problem admits an optimal strategy α.

The principal observes the output process continuously. However, she cannot distinguish

the drift α from the noise. In other words, when the output process increases, she does not

know if the agent works hard or she is just lucky. This information asymmetry between the

principal and agent creates moral hazard. Given agent’s optimal effort aξ and the associated

output process Xξ, the principal aims to maximize

E
[
UP (Xξ

T − ξ)
]
,

subject to agent’s participation constraint.
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2.3. Agent’s optimization problem. Let us first define a dynamic version of agent’s value

function:

vt := ess supαEαt
[
UA(ξ −

∫ T

t

1
2
α2
sds)

]
. (2.3)

One can think vt as the optimal value at time t if the agent acts optimally from time t

onwards. Therefore v is called the continuation value. Define u via

UA(ut) = vt. (2.4)

The process u is called the certainty equivalence, which is the monetary equivalence of agent’s

optimal value.

Now we present a heuristic argument to identify the dynamics of u. Assume that u has

the following dynamics

dut = Htdt+ ZtdBt,

where H will be determined in what follows.

Since UA is an exponential utility,

− 1
γ
e−γAuteγA

∫ t
0

1
2
α2
sds = ess supαEαt

[
− 1

γA
exp

(
− γA

(
ξ −

∫ T

0

1
2
α2
sds
))]

.

The martingale principal expects that

• − 1
γ
e−γAuteγA

∫ t
0

1
2
α2
sds is a supermartingale under Pα for any strategy α;

• − 1
γ
e−γAuteγA

∫ t
0

1
2
α2
sds is a martingale under Pα∗

for the optimal strategy α∗.

We will use this martingale principal to identify H, hence the dynamics of u. To this end,

applying Itô’s formula, we obtain

d− 1
γ
e−γAuteγA

∫ t
0

1
2
α2
sds

−e−γAuteγA
∫ t
0

1
2
α2
sds

=
[
−Ht + 1

2
γAZ

2
t + 1

2
α2
t

]
dt− ZtdBt

=
[
−Ht + 1

2
γAZ

2
t + 1

2
α2
t − Zt αtσ

]
dt− ZtdBα

t ,

where the second identity follows from (2.2). Having − 1
γ
e−γAuteγA

∫ t
0

1
2
α2
sds as a supermartin-

gale implies that

−H + 1
2
γAZ

2 + 1
2
α2 − Z α

σ
≥ 0 dt× Ω a.s.

Moreover, having one α∗ such that − 1
γ
e−γAuteγA

∫ t
0

1
2

(α∗
s)2ds is a martingale implies that the

previous inequality is an identity when α = α∗. Therefore,

H = inf
α

{
1
2
α2 − Z α

σ

}
+ 1

2
γAZ

2

=1
2
(γA − 1

σ2 )Z2,

and the optimal α is

α∗ = Z
σ
.
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Therefore, the martingale principal implies that

dut = 1
2
(γA − 1

σ2 )Z2
t dt+ ZtdBt, uT = ξ, (2.5)

where the terminal condition follows from (2.3) and (2.4).

One can view (2.5) as a Backward Stochastic Differential Equation (BSDE), whose solution

is a pair of adapted processes (u, Z). The BSDE (2.5) can be solved explicitly. Consider the

process e(
1
σ2−γA)ut . Itô’s formula implies that

de(
1
σ2−γA)ut =

(
1
σ2 − γA

)
e(

1
σ2−γA)utZtdBt, e(

1
σ2−γA)uT = e(

1
σ2−γA)ξ.

Given that E
[
e(

1
σ2−γA)ξ

]
<∞, we have

e(
1
σ2−γA)ut = Et

[
e(

1
σ2−γA)ξ

]
,

and Z is identified by the martingale representation theorem. In conclusion, for any contract

ξ such that E
[
e(

1
σ2−γA)ξ

]
<∞, we can identify (u, Z) satisfying (2.5). This pair is also unique

in the class where e(
1
σ2−γA)u is of class (D).

The equation (2.5) also provides a handy representation of the contract ξ. Given u0 and

the process Z, running the dynamics (2.5) forward in time yields

ξ = u0 +

∫ T

0

1
2
(γA − 1

σ2 )Z2
t dt+

∫ T

0

ZtdBt. (2.6)

This representation will be useful for principal’s optimization problem.

We have derived the dynamics of u from the martingale principal. Let us now start from

(2.5) and verify that its solution is the certainty equivalence defined in (2.4).

Proposition 2.2. We restrict the contract ξ and agent’s strategy α to the class such that

the BSDE (2.5) admits a solution (u, Z) and exp
(
− γA(u−

∫ ·
0

1
2
α2
sds)

)
is of class (D). Then

agent’s optimal strategy is α∗ = Z/σ and u is agent’s certainty equivalence.

Proof. For arbitrary α, the construction of H ensures that − 1
γA
e−γA(ut−

∫ ·
0

1
2
α2
sds) is a local

supermartingale. Since we assume that this process if of class (D), it is also a supermartingale.

Therefore

UA(ut) = − 1
γA
e−γAut ≥ Eαt

[
− 1

γA
e−γA

(
uT−

∫ T
t

1
2
α2
sds
)]

= Eαt
[
− 1

γA
e−γA

(
ξ−

∫ T
t

1
2
α2
sds
)]
.

When α = α∗, − 1
γA
e−γA(ut−

∫ ·
0

1
2

(α∗)2sds) is a local martingale, hence a martingale due to its

class (D) property. Therefore, the previous inequality is an identity, verifying the optimality

of α∗. �
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2.4. Principal’s optimization problem. Using (2.6), principal’s expected utility is re-

duced to

Eα∗[
UP (Xξ

T − ξ)
]

= − 1
γP
Eα∗
[

exp
(
− γP

(∫ T

0

Zt
σ
dt+

∫ T

0

σdBα∗

t − u0 −
∫ T

0

1
2
(γA − 1

σ2 )Z2
t dt−

∫ T

0

ZtdBt

))]
= − 1

γP
Eα∗
[

exp
(
− γP

(
− u0 +

∫ T

0

(
Zt
σ
− 1

2
(γA + 1

σ2 )Z2
t

)
dt+

∫ T

0

(σ − Zt)dBα∗

t

))]
,

where (2.2) is used to obtain the second identity. Rewrite the right-hand side using the

stochastic exponential

E
( ∫ T

0

−γP (σ − Zt)dBα∗

t

)
= exp

(
− γP

∫ T

0

(σ − Zt)dBα∗

t − 1
2
γ2
P

∫ T

0

(σ − Zt)2dt
)
.

We obtain

Eα∗[
UP (Xξ

T − ξ)
]

= − 1
γP
E
[

exp
(
γPu0 +

∫ T

0

f(Zt)dt
)
E
(∫ T

0

−γP (σ − Zt)dBα∗

t

)]
,

(2.7)

where

f(Z) = 1
2
γ2
P (σ − Z)2 − γP Zσ + 1

2
γP
(
γA + 1

σ2

)
Z2.

Set Z∗ = argminf(Z). Calculation yields

Z∗ = σ
1 + σ2γP

1 + σ2(γA + γP )
.

Now we are ready to present the optimal contract for the principal. In contrast to the

one-period model, a linear contract is proved to be optimal in a large class of contracts,

which satisfies proper integrability conditions and includes nonlinear and path-dependent

contracts.

Theorem 2.3. Consider the class of contracts specified in Proposition 2.2, moreover E
( ∫
−γp(σ−

Zt)dB
Z/σ
)

is a PZ/σ-martingale. Then the linear contract

ξ =
1 + σ2γP

1 + σ2(γA + γP )
XT + b,

where b = R + 1
2
(γA − 1

σ2 )(Z∗)2T , is the optimal contract.

Proof. From (2.7), we can see that principal’s expected utility is a decreasing function of

u0. On the other hand, u0 is agent’s certainty equivalence at time 0. Therefore, in order to
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satisfy the participation constraint, the principal chooses u0 = R. From (2.7), we also obtain

Eα∗[
UP (Xξ

T − ξ)
]

≤ − 1
γP
eγPR+f(Z∗)TEα∗

[
E
(∫ T

0

−γP (σ − Zt)dBα∗

t

)]
= − 1

γP
eγPR+f(Z∗)T ,

where the identity follows the assumption that the expectation of the stochastic exponential

is 1. The inequality above is an identity, when Z in (2.6) is chosen as Z∗. Recalling that

B = X/σ, we have verified the optimality of the contract in the statement. �

3. Sannikov (2008)

3.1. Problem formulation. Rather than a contract of lump sum payments in the last

section, we consider a model of continuous payments in [Sannikov, 2008]. The output process

X is formulated weakly as in (2.1), whose drift is controlled by the agent. The agent’s

preference is represented by a utility function U and the rate of cost for agent’s effort is

given by a function g. We do not specify explicitly forms for U and g, only assume that g

is strictly convex. Rather than the monetary cost as in the last section, we consider g(α) as

the cost to agent’s utility per unit of time.

A contract is a stream of payments {ct; t ≥ 0}. The agent receives the cash flow c and

consume it right away without saving. The agent’s optimization problem is

rEα
[ ∫ ∞

0

e−rt
(
u(ct)− g(αt)

)
dt
]
→ Max,

where r is the discounting rate and the r in front of the expectation is a normalization

constant. We assume that agent’s optimization problem admits an optimal strategy α∗.

Agent’s reservation utility is R; i.e., the agent will not work for the project if the optimal

value is less than R. Define agent’s continuation value as

Wt = ess supαrEαt
[ ∫ ∞

t

e−r(s−t)
(
u(cs)− g(αs)

)
ds
]
. (3.1)

The agent has limited liability. He does not accept negative W in any situation.

The principal is risk neutral. She chooses the compensation stream c to maximize her

expected profit

sup
c,τe

rEα∗[ ∫ τ0∧τe

0

e−rt
(
α∗t − ct

)
dt
]
,

where τ0 is the first time that agent’s continutation value reaches zero, i.e., τ0 = inf{t ≥ 0 :

Wt = 0}, and τe. At time τ0, the contract is terminated, the agent is no longer paid and

he exerts zero effort after τ0. At time τe, the principal retires the agent by paying him a
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constant rate forever, then agent stops working. This constant retirement rate is determined

so that agent’s continuation value remains the same at retirement time.

3.2. Agent’s optimization problem. Let us first use the martingale principle to heuris-

tically derive the dynamics of agent’s continuation value W . Define W̃ as

W̃ = e−rtWt + r

∫ t

0

e−rs
(
U(cs)− g(αs)

)
ds.

Given c, we expect from the martingale principle that W̃ is a supermartingale under Pα for

arbitrary strategy α, and a martingale under Pα∗
for the optimal α∗. Suppose that W has

the dynamics

dWt = Htdt+ rσZtdBt.

Itô’s formula implies that

dW̃t =e−rt
(
Htdt+ rσZtdBt − rWtdt+ r

(
U(ct)− g(αt)

)
dt
)

=re−rt
(

1
r
Ht −Wt + αtZt + U(ct)− g(αt)

)
dt+ re−rtσZtdB

α
t .

The martingale principle implies that the drift is nonnegative for arbitrary α and zero for

the optimal α∗. Therefore,

H = r
(

inf
α
{g(α)− αZ}+W − U(c)

)
= r
(
− ĝ(Z) +W − U(c)

)
,

where ĝ(Z) = − infα{g(α) − αZ} and the optimal strategy α∗ = (g′)−1(Z). As a result, W

follows the dynamics

dWt = r
(
− ĝ(Zt) +Wt − U(ct)

)
dt+ rσZtdBt. (3.2)

Rather than a terminal condition at a finite time, the terminal condition for (3.2) is replaced

by the following transversality condition

lim
τ→∞

Eα
[
e−rτWτ

]
= 0, for strategy α and any stopping time τ →∞. (3.3)

From a BSDE point of view, (3.2), together with (3.3), is called an infinite horizon BSDE,

studied by Royer (2004).

The following result makes the heuristic argument rigorous. Let us restrict the compen-

sation stream and agent’s strategy α such that

Eα
[ ∫ ∞

0

e−rtU(ct)dt
]
<∞ and Eα

[ ∫ ∞
0

e−rtg(αt)dt
]
<∞.

Proposition 3.1. For a given compensation stream c, suppose that there exists processes W

and Z satisfying (3.2) and (3.3). Then α∗ = (g′)−1(Z) is agent’s optimal strategy and W is

agent’s continuation value defined in (3.1).
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Proof. From the construction of H, we have that W̃ is a local supermartingale. Take a

localization sequence {τn} of its local martingale part. We have

Wt ≥ Eαt
[
e−rτnWτn + r

∫ τn

t

e−rt
(
U(ct)− g(αt)

)
dt
]
. (3.4)

Sending τn → ∞ on the right-hand side, and using (3.3) and the dominated convergence

theorem, we obtain

Wt ≥ Eαt
[ ∫ ∞

t

e−rt
(
U(ct)− g(αt)

)
dt
]
.

For the strategy α∗, the inequality in (3.4) is an identity. A similar limit argument yields

Wt = Eα∗

t

[ ∫ ∞
t

e−rt
(
U(ct)− g(α∗t )

)
dt
]
,

confirming the optimality of α∗. �

3.3. Principal’s optimization problem. The key observation by Sannikov is that agent’s

continuation value can be used as the state variable for principal’s problem. Consider the

dynamics (3.2), where both Z and c are considered as the control variables for the principal.

Define principal’s value function as

F (W ) = sup
c,Z,τ

Eα∗[
r

∫ τ0∧τ

0

e−rt
(
α∗t − ct

)
dt
∣∣W0 = W

]
,

where α∗ = α(Z) = (g′)−1(Z) and τ0 = inf{t ≥ 0 : Wt = 0}. This is an optimal control-

stopping problem.

To derive an equation satisfied by F , we use the martingale principle again. To this end,

consider

F (Wt) = ess supc,Z,τEα(Z)
[
r

∫ ∞
t

e−r(s−t)
(
α(Zs)− cs

)
ds
]
,

and define

Mt = r

∫ t

0

e−rs
(
α(Zs)− cs

)
ds+ e−rtF (Wt).

We expect from the martingale principle that M is a supermartingale under Pα(Z) for arbi-

trary c, Z, τ , and M is a martingale under Pα(Z) until τ ∗ for optimal c∗, Z∗, τ ∗. Assuming

that F ∈ C2(R), applying Itô’s formula to M , we obtain

dMt =e−rt
[
r(α(Zt)− ct)− rF (Wt) + r

(
− ĝ(Zt) +Wt − U(ct)

)
F ′(Wt) + r2σ2

2
Z2
t F
′′(Wt)

]
dt

+ re−rtσZtF
′(Wt)dBt

=re−rt
[
α(Zt)− ct − F (Wt) +

(
g(α(Zt)) +Wt − U(ct)

)
F ′(Wt) + rσ2

2
Z2
t F
′′(Wt)

]
dt

+ re−rtσZtF
′(Wt)dB

α(Z)
t .
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The drift must be nonnegative for all controls and zero for optimal controls. Therefore, we

obtain the following Hamilton-Jacobi-Bellman (HJB) equation for F :

0 = sup
c,Z

{
α(Z)− c− F (W ) +

(
g(α(Z)) +W − U(c)

)
F ′(W ) + rσ2

2
Z2F ′′(W )

}
. (3.5)

This HJB equation needs two boundary conditions. On the one hand,

F (0) = 0. (3.6)

On the other hand, define a retirement function F0(U(c)) = −c. This is the value to the

principal if she pays the agent a constant rate c. In this case, the agent no longer works.

The other boundary condition is

F (W̄ ) = F0(W̄ ) and F ′(W̄ ) = F ′0(W̄ ). (3.7)

This is a free-boundary condition, since W̄ is determined together with the solution F . The

condition on the first order derivative is called the smooth pasting condition.

Now we are ready to state the main theorem.

Theorem 3.2. Suppose that the HJB equation (3.5) together with its boundary conditions

(3.6) and (3.7) admit a solution F ∈ C2(0, W̄ ) and W̄ ∈ [R,∞). Let Z(W ) maximizes

α(Z) + g(α(Z))F ′(W ) + rσ2

2
Z2F ′′(W ),

and c(W ) maximizes

−c− U(c)F ′(W ).

Choose W ∗ = maxW∈[R,W̄ ] F (W ) and define W via the following SDE

dWt = r
(
− ĝ(Z(Wt) +Wt − U(c(Wt)))

)
dt+ rσZ(Wt)dBt, W0 = W ∗.

Then principal’s optimal contract is given by c(W ), agent’s optimal effort is α(Z(W )), τ0 =

inf{t ≥ 0 : Wt = 0}, and τe = inf{t ≥ 0 : Wt = W̄}.

Remark 3.3. The proof is a verification argument, see [Sannikov, 2008] and [Strulovici and Szydlowski, 2015].

In particular, in order to ensure (3.5) admits a C2 solution, one needs to restrict Z ≥ Z for

some positive constant Z. This ensures (3.5) is uniformly elliptic, but restricts principal’s

admissible contracts. An numeric example is given in Figure 1.

4. DeMarzo and Sannikov (2006)

4.1. Problem formulation. We present [DeMarzo and Sannikov, 2006] in this section.

The agent, if hired, produces an output process X which follows

dXt = (µ− αt)dt+ dBα
t ,
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where µ is a constant and dBα
t = dBt + αtdt. The agent’s effort α is a “shirking” action,

which can be interpreted as inefficient implementation or working less hard than he should

be. This shirking action yields private benefit to the agent. The agent can choose any non-

negative α. The benefit is described by a parameter λ ∈ [0, 1]. The larger λ is, the higher

benefit agent gets. The cumulative compensation paid by the principal is described by a

non-decreasing process C. The agent is risk neutral and has a reservation utility R. Given

C, Agent’s optimization problem is

Eα
[ ∫ ∞

0

e−γt
(
dCt + λαtdt

)]
→ Max.

Let α∗ be agent’s optimal strategy for the problem above.

The principal pays the agent a non-decreasing process C. The agent has limited liability.

When his continuation value reaches zero, the project is liquidated, the principal gets L and

the agent gets nothing more and stops shirking. Principal’s optimization problem is

Eα∗[ ∫ τ

0

e−rt[(µ− αt)dt− dCt] + e−rτL
]
,

subject to agent’s participation constraint.

4.2. Agent’s optimization problem. Define agent’s continuation value

Wt = ess supαEαt
[ ∫ ∞

t

e−γ(s−t)(dCs + λαsds
)]
.

Using the martingale principal similarly as before, we obtain the dynamics of W as

dWt =
[
γWt + inf

α≥0
{αt(Zt − λ)}

]
dt− dCt + ZtdBt. (4.1)

When Z ≥ λ, the optimizer α∗ = 0 and infα≥0{αt(Zt−λ)} = 0. If Z < λ has positive measure

under dt×dP, the drift of (4.1) is −∞. Therefore, wellposedness for agent’s problem impose

a constraint for the contract sensitivity

Z ≥ λ dt× dP a.s. (4.2)

We also need the transversality condition

lim
τ→∞

Eα
[
e−rτWτ

]
= 0, for strategy α and any stopping time τ →∞. (4.3)

We constrain the compensation process C and agent’s strategy α to the classes which

satisfy the following integrability property.

Eα
[ ∫ ∞

0

e−rtU(ct)dt
]
<∞ and Eα

[ ∫ ∞
0

e−rtg(αt)dt
]
<∞.

An argument similar to Proposition 3.1 yields
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Proposition 4.1. Let W and Z be two processes satisfying

dWt = γWtdt− dCt + ZtdBt,

the constraint (4.2) and the transversality condition (4.3). Then α∗ = 0 is agent’s optimal

strategy and W is agent’s continuation value.

4.3. Principal’s optimization problem. Consider W as the state variable for principal’s

optimization problem. Define principal’s value function as

F (Wt) = ess supZ≥λEt
[ ∫ τ

t

e−r(s−t)[µds− dCs] + e−r(τ−t)L
]
,

where τ = inf{s ≥ t : Ws ≤ 0}. This is called a singular control problem.

Applying the martingale principal to principal’s optimization problem, assuming that C

is differentiable, we can get the following HJB equation

rF (W ) = max
Z≥λ,C

{
µ+ γWF ′(W )− (1 + F ′(W ))C ′ + Z2

2
F ′′(W )

}
. (4.4)

However, C ′ can be arbitrarily large, in order to keep the HJB equation well-posed, we need

F ′(W ) ≥ −1.

This inequality can also be understood from an economics point of view. The principal can

always pay the agent ∆C > 0. In this case, agent’s continuation value decreases by ∆C

F (W ) ≥ F (W −∆C)−∆C,

which implies F ′(W ) ≥ −1. On can also see from (4.4) that C ′ = 0 whenever F ′(W ) > −1.

Therefore, the principal delay the payment to the agent until F ′(W ) = −1.

The boundary conditions are

F (0) = L, F ′(W̄ ) = −1, and F ′′(W̄ ) = 0.

The third condition is the smooth pasting condition. The boundary conditions at W̄ imply

rF (W̄ ) + γW̄ = µ.

That is, the payments are postponed until the project’s expected return is used up by the

sum of the individual expected returns.

Theorem 4.2. Suppose that γ > r. Consider the ODE system :

µ+ γWF ′(W ) +
1

2
λ2F ′′(W )− rF (W ) = 0, F ′(W ) ≥ −1, W ∈ [0, W̄ ),

F ′(W ) = −1 W ≥ W̄ ,

F (0) = L, F ′′(W̄ ) = 0.

Assume that it admits a concave solution F ∈ C2 and W̄ <∞. Then,
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(i) F is Principal’s value function.

(ii) When W ∈ [0, W̄ ], truth-telling is optimal, i.e., a∗ ≡ 0. Moreover, it is optimal to set

Z ≡ λ, and the payments C to be the reflection process which keeps Wt within [0, W̄ ]. That

is, C is the smallest increasing process such that

Wt = W0 +

∫ t

0

γWsds− Ct + λBt

stays within [0, W̄ ]. In particular, when Wt ∈ (0, W̄ ), dCt = 0. The contract terminates once

W hits 0.

(iii) When W > W̄ , then the optimal contract pays an immediate payment of W − W̄ to

the agent, and the contract continues with the agent’s new initial utility W̄ .

Proof. Let F denote the solution to the ODE system and F̂ denote the value function. We

first show that F̂ ≤ F . To see that, introduce

Gt := −∆C0 +

∫ t

0

e−rs[(µ− αs)ds− dCs] + e−rtF (Wt).

By Itô’s formula we have

ertdGt =
[
µ− αt[1 + ZtF

′(Wt)] + γWtF
′(Wt) + 1

2
Z2
t F
′′(Wt)− rF (Wt)

]
dt

− [1 + F ′(Wt−)]dCt + ZtF
′(Wt)dB

α
t .

Since F ′(W ) ≥ −1 for W ∈ [0, W̄ ], we have

1 + lF ′(Wt) ≥ 0, 1 + F ′(Wt) ≥ 0.

This, together with the assumptions that F is concave and Z ≥ λ, implies that

ertdGt ≤
[
µ+ γWtF

′(Wt) +
1

2
λ2F ′′(Wt)− rF (Wt)

]
dt+ ZtF

′(Wt)dB
α
t .

When Wt ∈ [0, W̄ ], the drift is zero. When Wt > W̄ , by rF (W̄ ) + γW̄ = µ and other

boundary conditions, we can compute that the drift is

[r − γ][Wt − W̄ ] < 0,

thanks to r < γ. Therefore, in both the cases we have

ertdGt ≤ ZtF
′(Wt)dB

α
t .

Thus, G is a Pα-supermartingale. Notice that F (W ) = G0 and F (Wτ ) = F (0) = L. We have

then

F (W ) = G0 ≥ Eα[Gτ ].

for all a, τ . Taking the supremum, we get F = G0 ≥ F̂ .

For the strategy in the theorem, G is a martingale.

ertdGt = ZtF
′(Wt)dBt.
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Then, we have

F (W ) = G0 = E[Gτ ].

Thus, the upper bound is attained, and F̂ (W ) = F (W ) for W ∈ [0, W̄ ].

Finally, for W > W̄ , note that, by the ”immediate payment” argument above, the value

function satisfies, for W > W ′ > W̄ ,

F̂ (W ) ≥ F̂ (W̄ )−W + W̄

Since we have F̂ (W̄ ) = F (W̄ ) = F (W )− W̄ +W , we have F̂ (W ) ≥ F (W ). �

4.4. Implementation Using Standard Securities. We now want to show that the above

contract can be implemented using real-world securities, namely, equity, long-term debt and

credit line. The implementation will be accomplished using the following:

- The firm starts with initial capital K and possibly an additional amount needed for

initial dividends or cash reserves.

- The firm has access to a credit line up to a limit of CL. The interest rate on the credit line

balance is γ. The agent decides on borrowing money from the credit line and on repayments

to the credit line. If the limit CL is reached, the firm/project is terminated.

- Shareholders receive dividends which are paid from cash reserves or the credit line, at

the discretion of the agent.

- The firm issues a long (infinite) term debt with continuous coupons paying at rate x. If

the firm cannot pay a coupon payment, the project is terminated.

The agent will be paid by a fraction of dividends. We assume that once the project is

terminated the agent does not receive anything from his holdings of equity. Here is the result

that shows precisely how the optimal contract is implemented.

Theorem 4.3. Suppose that the credit line has interest rate γ, and that the long-term debt

satisfies

x = µ− γCL. (4.5)

Assume the dividends are paid only at the times the credit line balance hits zero, making the

credit line balance the process that reflects at zero. If the agent is paid by a proportion λ

of the firm’s dividends, he will not misreport the cash flows, and will use them to pay the

debt coupons and the credit line before issuing dividends. Denoting the current balance of the

credit line by Mt, the agent’s expected utility process satisfies

Wt = λ(CL −Mt). (4.6)

If in addition

CL = W̄/λ (4.7)

then the above capital structure of the firm implements the optimal contract.
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Proof. Denote by δt the cumulative dividends process. By that, we mean that dδt is equal

to whatever money is left after paying the interest γMtdt on the credit line and the debt

coupons xdt. Since the total amount of available funds is equal to the balance of the credit

line M plus the reported profit X, and since M+X is divided between the credit line interest

payments, debt coupon payments and dividends, we have

dMt = γMtdt+ xdt+ dδt − dXt

With Wt as in (4.6), and from (4.5), we have

dWt = −λdMt = γWtdt− λdδt + λdBt

If we set dCt = λdδt, then this corresponds to the agent’s utility with zero savings and

Z ≡ λ, which implies that the agent will not have incentives to misreport. Moreover, since

the dividends are paid when Mt = 0, which, by (4.7) is equivalent to Wt = W̄ , we see that

the optimal strategy is implemented by this capital structure. �
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